UNCLASSIFIED AD 409 598 # DEFENSE DOCUMENTATION CENTER FOR SCIENTIFIC AND TECHNICAL INFORMATION CAMERÓN STATION, ALEXANDRIA, VIRGINIA # UNCLASSIFIED NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto. Office of Naval Research Contract Nonr 1866 (02) Technical Report No. 16 ANALYSIS OF A STRUCTURE WITH A RANDOM GEOMETRY By J. Lyell Sanders Jr. 409598 Division of Engineering and Applied Physics Harvard University Cambridge, Massachusetts ## OFFICE OF NAVAL RESEARCH Contract Nonr 1866(02) Technical Report No. 16 # ANALYSIS OF A STRUCTURE WITH A RANDOM GEOMETRY bу J. Lyell Sanders Jr. Division of Engineering and Applied Physics Harvard University Cambridge, Mass. April 1963 Reproduction in whole or in part is permitted for any purpose of the United States Government ## ANALYSIS OF A STRUCTURE WITH A RANDOM GEOMETRY by # J. Lyell Sanders Jr. #### Introduction A metal polycrystal, a nonwoven fabric such as felt, a suspension of particles of random size, shape, and location in a viscous fluid, are examples of what we mean by a structure with a random geometry. The problem of interest in connection with such structures is the determination of some average property such as the effective Young's modulus or the effective viscosity or perhaps the probability density function of these properties. Solutions satisfactory for practical purposes to a fair number of such problems have appeared in the literature, but the author knows of no instance in which some (nontrivial) average property of a random structure has been determined exactly. The difficulty is not in solving some known mathematical equation, but rather in reducing such problems to exact mathematical terms. The purpose of the present paper is to become better acquainted with the nature of the problem by means of an exact analysis of a very simple random structure. The paper is concerned with the analysis of a structure which is essentially one-dimensional. It turns out that the analysis of this structure is much like the analysis of a Markov process. The fact that a spacial coordinate replaces the time-like independent variable of a Markov process makes for some complication as might be expected since boundary value problems are generally more complicated than initial value problems. The results obtained give no This work was sponsored by the Office of Naval Research under Contract Nonr 1866(02). clear indication of how to approach the exact analysis of any physical problem but suggest that the next step should probably be to invent some two-dimensional problem sufficiently simple to be analyzed and not so complicated as a real physical problem is likely to be. #### Analysis of a Random Structure The structure to be considered is composed of a uniform elastic rod pin-jointed to a series of elastic beams which are built-in to a rigid foundation as shown in Figure 1. Figure 1 The beams are randomly spaced with, on the average, N beams per unit length. In other words the probability of finding a beam in a length δx is equal to M δx . If the random variable y is the distance between successive beams then, as is well known in such cases, the probability density function (p.d.f.) of y is given by the Poisson law Ne^{-Ny}. For the present suppose the rod is semi-infinite with one end at the origin. Let a force F be applied to the rod at the origin and let the resulting displacement of the end be u. Let $\sigma = F/u$ be called the stiffness of the structure. Consider the problem of finding the p.d.f. $P(\sigma)$ of the random variable σ . First add on a beam at the origin. The stiffness of the augmented structure σ^+ is $$\sigma' = \sigma + \alpha \tag{1}$$ where α is the stiffness of a beam with respect to a load at its tip. The p.d.f. σ^+ is thus $$Q(\sigma^{\dagger}) = P(\sigma) \frac{d\sigma}{d\sigma^{\dagger}} = P(\sigma^{\dagger} - \alpha)$$ (2) Now add a piece of rod of length y. The stiffness σ^{ii} of the augmented structure is now given by $$\frac{1}{\sigma''} = \frac{1}{\sigma'} + \frac{1}{\varkappa/y} \tag{3}$$ where x/L is the stiffness of a rod of length L . The conditional probability density function (c.p.d.f.) of σ'' given σ' is $$T(\sigma^{"};\sigma^{'}) = R(y) \left| \frac{dy}{d\sigma^{"}} \right| = R(\frac{x}{\sigma^{"}} - \frac{x}{\sigma^{"}}) \frac{x}{(\sigma^{"})^{2}}$$ (4) where $$R(y) = Ne^{-Ny} \qquad y \ge 0$$ $$= 0 \qquad y < 0$$ (5) and the p.d.f. of σ'' is $$\int T(\theta'';\sigma')Q(\sigma')d\sigma'$$ (6) Now the augmented structure with the beam and rod added is statistically the same as the original structure, therefore the p.d.f. of σ^{ii} must be the same as the p.d.f. of σ and hence $${}^{\circ} P(\sigma) = \frac{N\alpha}{\sigma^2} \int_{\sigma}^{\sigma} e^{-N\alpha \left(\frac{1}{\sigma} - \frac{1}{\sigma^{\dagger}}\right)} P(\sigma^{\dagger} - \alpha) d\sigma^{\dagger}$$ (7) The integral equation (7) is easily reducible to the following differential- $$(\sigma^2 P)' - x NP = -x NP(\sigma - \alpha)$$ (8) where a prime denotes differentiation with respect to σ . If the beams have a random stiffness β with p.d.f. $S(\beta)$ we obtain instead of (8) the following $$(\sigma^2 P)' - \mu N P = -\mu N \int_0^{\sigma} P(\xi) S(\sigma - \xi) d\xi$$ (9) Equations (8) or (9) must be solved subject to the normalization condition $$\int_{0}^{\frac{\pi}{2}} P(\sigma) d\sigma = 1$$ (10) Let $P_L(p)$ denote the Laplace transform of $P(\sigma)$. We have $$P_{L}(p) = \int_{0}^{\infty} P(\sigma)e^{-\sigma p}d\sigma \qquad P_{L}^{1}(0) = -\int_{0}^{\infty} gP(\sigma)d\sigma = -\overline{\sigma}$$ $$P_{L}^{1}(0) = \int_{0}^{\infty} \sigma^{2}P(\sigma)d\sigma = \overline{\sigma}^{2}$$ (11) where a bar over a quantity indicates its mean value. Taking the Laplace transform of Eq. (9) leads to $$P_{L}^{"} - \kappa N \frac{1-S_{L}}{P} P_{L} = 0$$ (12) In the special case $S(\beta) = \frac{1}{\alpha} e^{-\beta/\alpha}$ for which $\bar{\beta} = \alpha$ the exact solution for $P(\theta)$ is $$P(\sigma) = \frac{\sqrt{\alpha NN}}{2\sigma^2 K_1 (\sqrt{\frac{4NN}{\alpha}})} e^{-(\frac{NN}{\sigma} + \frac{\sigma}{\alpha})}$$ (13) where K_1 is the modified Bessel function of the second kind. It is interesting to make some comparisons with the stiffness of a similar structure with uniformly spaced beams. Let the beams be spaced uniformly at a distance 1/N and have a uniform stiffness α , then the stiffness of the structure (with no beam at the finite end) is $$\sigma = (\alpha \times N + \frac{\alpha^2}{4})^{1/2} - \frac{\alpha}{2}$$ (14) Now let $\alpha \to 0$, N $\to \infty$ and require α N to remain finite, then $$\sigma^2 \rightarrow \alpha \text{ mn}$$ (15) From Eq. (12) and with $\bar{\beta} = -S_L^{\dagger}(0) = \alpha$ $$\overline{\sigma^2} = \lim_{p \to 0} P_L^{ii} = \alpha \pi N \tag{16}$$ the same result as in (15), but in general $(\bar{\sigma})^2 \neq \overline{\sigma^2}$. ### Structure of Finite Length The solution of the problem in the preceding section for a semi-infinite entructure depended on a special device which will not work for a structure of finite length. Consider now a somewhat more complicated problem for the structure shown in Figure 2. Figure 2 Let it be required to find the joint p.d.f. $R(\sigma,u,x)$ where σ and u are the stiffness and displacement at the right end. The left end of the structure is subjected to a load F as shown and u is taken positive to the left. This time augment the structure by an infinitesimal piece in such a way as to leave the statistical character of the structure undisturbed. Let $R_1(\sigma,u,x+\delta x)$ be the new R on condition there is no beam in the added piece of length δx , and R_2 be the new R on condition there is a beam in the added length. The unconditional new R is given by $$R(\sigma, u, x + \delta x) = R_1(\sigma, u, x + \delta x) (1 - N\delta x) + R_2(\sigma, u, x + \delta x) N\delta x$$ (17) since we do not or do include a beam in the added piece with probabilities $1-N\delta x \ \ \text{and} \ \ N\delta x \ \ \text{respectively.} \ \ \text{Expressions for} \ \ R_1 \ \ \text{and} \ \ R_2 \ \ \text{are found as follows.}$ 1. No beams added. Let σ' and u' be the new displacement and stiffness. These are related to σ and u as follows $$\begin{array}{ccc} u^{\dagger} = u & u = u^{\dagger} \\ & & \text{or} \\ \frac{1}{\sigma^{\dagger}} = \frac{1}{\sigma} + \frac{\delta_{X}}{\kappa} & \sigma = \frac{\kappa \sigma^{\dagger}}{\kappa - \sigma^{\dagger} \delta_{X}} \end{array}$$ (18) According to the calculus of probabilities $$R_{1}(\sigma', u', x + \delta x) d\sigma' du' = R(\sigma, u, x) d\sigma du$$ (19) where $$d\sigma du = J(\frac{\sigma_{,u}}{\sigma'_{,u}}) d\sigma' du' = (\frac{\pi}{\pi - \sigma' \delta \pi})^2 d\sigma' du'$$ (20) and where J is the Jacobian of the change of variable. From this it follows $$R_{1}(\sigma^{\dagger}, u^{\dagger}, x + \delta x) = R(\frac{\kappa \sigma^{\dagger}}{\kappa - \sigma^{\dagger} \delta x}, u^{\dagger}, x) \left(\frac{\kappa}{\kappa - \sigma^{\dagger} \delta x}\right)^{2}$$ (21) 2. Beam added. In this case the change in stiffness due to the added rod may be neglected and we have $$\sigma' = \sigma + \alpha \tag{22}$$ The added beam exerts a force $\alpha \dot{u}^i$ on the oldestructure and causes a displacement to the right by an amount $$u'' = \frac{\alpha u'}{\sigma} \tag{23}$$ but $$\mathbf{u}^{\dagger} = \mathbf{u} - \mathbf{u}^{\dagger\dagger} \tag{24}$$ therefor $$u^1 = u - \frac{\alpha u^1}{\sigma}$$ or $u = \frac{\sigma^1 u^1}{\sigma^1 - \alpha}$ (24) In this case $$J = \frac{\sigma^{1}}{\sigma^{1} - \alpha}$$ (25) and $$R_{2}(\sigma^{\dagger}, u^{\dagger}, x + \delta x) = R(\sigma, u, x) \frac{\sigma^{\dagger}}{\sigma^{\dagger} - \alpha} = R(\sigma^{\dagger} - \alpha, \frac{\sigma^{\dagger} u^{\dagger}}{\sigma^{\dagger} - \alpha}, x) \frac{\sigma^{\dagger}}{\sigma^{\dagger} - \alpha}$$ (26) Primes can now be dropped with no loss in sense and (17) becomes $$R(\sigma, u, x + \delta x) = R(\frac{x_{\sigma}}{x - \sigma \delta x}, u, x)(\frac{x}{x - \sigma \delta x})^{2}(1 - N\delta x) + \frac{\sigma}{\sigma - \alpha}R(\sigma - \alpha, \frac{\sigma u}{\sigma - \alpha}, x)N\delta x$$ (27) Subtract $R(\sigma,u,x)$ from both sides, divide by δx and let $\delta x \to 0$, the result is $$\frac{\partial R}{\partial x} - \frac{1}{\kappa} \frac{\partial}{\partial \sigma} (\sigma^2 R) + NR = \frac{N\sigma}{\sigma - \alpha} R(\sigma - \alpha, \frac{\sigma u}{\sigma - \alpha}, \kappa)$$ (28) If the beam stiffness is random with p.d.f. $S(\beta)$ then the result is $$\frac{\partial R}{\partial x} = \frac{1}{\kappa} \frac{\partial}{\partial \sigma} (\sigma^2 R) + NR = N\sigma \int_0^{\sigma} R(\sigma - \xi, \frac{\sigma u}{\sigma - \xi}, x) S(\xi) \frac{d\xi}{\sigma - \xi}$$ (29) These equations are to be solved subject to the usual normalising condition and the initial condition $R(\sigma,u,0)=0$ for $\sigma u \neq F$. The equation for the marginal distribution $P(\sigma,x)$ may be obtained from (29) by integration over all values of u. The result is $$\frac{\partial P}{\partial x} = \frac{1}{\kappa} \frac{\partial}{\partial \sigma} (\sigma^2 P) - NP + N \int_0^{\sigma} P(\sigma - \xi) S(\xi) d\xi$$ (30) Appropriate conditions on the solution of this equation are $P(\sigma,0)$ given and $\int_0^\infty P(\sigma,x)d\sigma = 1$. If the left end is attached to a spring of stiffness σ^* , for example, the initial condition is $P(\sigma,0) = \delta(\sigma^*\sigma^*)$. No solutions of Eq. (30) have been obtained by the author except the one given in the last section for the semi-infinite structure when Eq. (30) reduces to Eq. (9) because $\frac{\partial P}{\partial x} = 0$. #### Properties at an Interior Point Let us now turn our attention to the problem of determining the joint p.d.f. of σ , u, and force f (in the rod) at a point x interior to a structure of finite length L. This problem may be solved in terms of previously determined probability density functions if we make a cut in the structure at the point $\,\mathbf{x}$ and then determine the forces and displacements necessary to restore continuity and equilibrium. Figure 4 Figure 4 shows the cut structure near the point x . Let: σ_1 = the stiffness at the point 1 σ_2 = the stiffness at the point 2 o = the stiffness of the continuous structure at x f = the force necessary to effect the closure which equals the force at x on the continuous structure $\mathbf{u_0}$ = the gap between 1 and 2 before the two pieces of the structure are joined together u = the displacement at x of the continuous structure (positive to the left) u_1 = displacement of point 1 after the force f is applied u2 = displacement of point 2 after the force f is applied We have $$u_1 = u_0 - f/\sigma_1$$ (31) $$\mathbf{u}_2 = \mathbf{f}/\sigma_2 \tag{32}$$ The structure will be continuous and in equilibrium if f and u are determined from $$u_1 = u_2 = u$$ (33) This gives $$f = \frac{\sigma_1 \sigma_2 u_0}{\sigma_1 + \sigma_2} \tag{34}$$ $$u = \frac{\sigma_1 u_0}{\sigma_1 + \sigma_2} \tag{35}$$ The stiffness of the joined structure is obviously $$\sigma = \sigma_1 + \sigma_2 \tag{36}$$ Now since σ_1 and u_0 are independent of σ_2 we may write $$P(\sigma, u, f, x) = R(\sigma_1, u_0, x)P(\sigma_2, L-x)J(\frac{u_0, \sigma_1, \sigma_2}{\sigma, u, f})$$ (37) where p is the required p.d.f. and R and P have been previously defined. Equations (34), (35) and (36) may be solved for σ_1 , σ_2 and u_0 with the result $$u_0 = \sigma u^2/(\sigma u - f)$$ $$\sigma_1 = \sigma - f/u$$ $$\sigma_2 = f/u$$ (38) From (38) we calculate J to be $$J = \sigma/(\sigma u - f) \tag{39}$$ The result is thus $$p(\sigma,u,f,x) = R(\sigma - \frac{f}{u}, \frac{\sigma u^2}{\sigma u - f}, x)P(\frac{f}{u}, L - x)\frac{\sigma}{\sigma u - f}; \quad \sigma > \frac{f}{u} > 0$$ $$= 0 \qquad \qquad \frac{f}{u} < 0 \quad \text{or} \quad \sigma < \frac{f}{u} \qquad (40)$$ With a sufficient amount of effort one can derive an equation resembling a Fokker-Planck equation satisfied by p, but the results for L finite or infinite differ from each other. The author has been unable to arrive at these equations from first principles or to determine whether or not these equations together with certain boundary conditions constitute an appropriate formulation of the problem. The equation in question contains $\frac{\partial p}{\partial x}$ but not $\frac{\partial^2 p}{\partial x^2}$ and the association of such an equation with two point boundary conditions seems inappropriate. On the other hand there does not seem to be any reasonable second-order Fokker-Planck equation satisfied by p. | Chief of Nevel Recentch
Department of the Nevy
Vanhington 25, D.C.
Attms Code k36 (2) | Commanding Officer Office of Maval Research Branch Office Ny5 Summer Street Beston 10, Massachusetts (2) | Commanding Officer OME Breach Office John Crerar Library Building So Best Randalph Street Chinego 11, 11liania (1) | Commander
U.S. Horal Proving Grounds
Dehlgron, Virginia (1) | Daporintendent
Hoval Can Festery
Unchington 25, D.C. (1) | Communior
Haral Gramman Fact Station
Impelero, Chine Lake, California
Atta: Physics Division (1) | |---|--|--|---|--|--| | Commanding Officer
Office of Haval Research
Branch Office
346 Breakey
How York 13, N.T. (1) | Commanding Officer Office of Haval Research Breach Office 1050 E. Green Street Pacadone, California (1) | Commaning Officer Office of Naval Recogniblement Office 1000 Georgy Burest Sen Francisco, California (1) | Communicy
Havel Ordenson Test Station
Hypotern, China Laim, California
Atta: Hackanice Branch (1) | Commender Herel Ordnesse Test Station 1802 E. Footbill Benjavard Factors S. Ollifornia 18th Structure Stricton (1) | Nr. E.H. Logman, Searctary
Initing Research Council of
The Ingineering Possibility
29 V. John Muroot
How York 18, How York (2). | | Commending Officer Office of Naval Research Navy No. 100, Plact Port Office New York, N.X. (25) | Director
Naval Receased Laboratory
Machington 25, D.C.
Attn: Toch. Info Office (6) | Director
Horal Research Laboratory
Heahington 25, D.C.
Attm: Code 6200 (1) | Commanding Officer and Director
Horal Engineering Emperiment
Status
Annapalis, Haryland (1) | Superintendent
Sevel Pertgraduate School
Hunteray, California (1) | Commendent
Hardas Corps Schools
Santico, Virginia
Attn: Director, Harine Corps
Dovelopment Canter (1) | | Director Mirel Research Laboratory Whehington 25_2 D.C. Attn: Code 6205 (1) | | Director Haval Research Laboratory Washington 25, D.C. Attn: Code 6260 (1) | Communiting Conserval U.S. Air Force Whekington 25, D.C. Attn: Inscered and Dovelopment Division (1) | Commander
U.S. Air Porce Brot. of Technol.
Uright-Petterom Air Force Base
Daytom, Chie
Attas Chief, Appl. Hechanics Cr.
U.S. Atunde Energy Commission | Director of Intelligence
Readquarters, U.S. Air Ferce
Washington 15, D.C.
Attn: F.Y. Breach
(Air Targets Diricism) (1)
Prof. Walter T. Denials | | Armed Services Technical Infor-
mation Agency
Arlington Hall States
Arlington 18, Yirginia (5) | Office of Technical Services
Department of Commerce
Heahington 25, D.C. (1) | Office of the Secretary of Defense
Research and Development Div.
The Pentagen
Vachington ES, D.C.
Atta: Technical Library (1) | Commander Air Research and Developt,Command P.O. Ber 1395 Rattinero 1, Maryland Attm: NCHOT (1) | Michington 25, D.C.
Attn: Director of Research (2) | School of Engineering and
Architecture
Housel University
Vanhington 1, D.C. (1) | | Chief, Armed Perces Special
Vespen Praject
The Portagen
Nachington 25, D.C.
Attn: Techn, Info, Div, (2) | Office, Secretary of the Army
The Funtagem
Shehington 25, D.C.
Attn: Army Library (1) | Chief of Staff Department of the Army Weshington 25, D.C. Attail Development Branch (R and D Div.) (1) | Director
Noticeal Bureau of Standards
Unablington 25, D.G.
Atta: Division of Nachanies (1) | Director National Bureau of Standards Weshington 25, D.C. Attn: Engineering Mechanics Section (1) | Director
Hoticael Durons of Standards
Hobington 25, D.C.,
Attn: Aircraft Structures (1) | | Chief of Staff Department of the Army Weshington 25, D.C. Attn: Research Branch (R and D Div.) (1) | Chief of Staff
Department of the Army
Meshington 25, D.C.
Atter Special Meapons Branch
(R and D Div.) (1) | Office, Chief of Engineers
Department of the Army
Washington 25, D.C.
Attn: MCD-UL Library Bro,
Adm. Ser. Div. (1) | Commentant, U.S. Coast Guard
1300 B Street, N.W.
Washington E5, D.D.
Attn: Chief, Testing and
Development Diricism (1) | V.S. Northine Administration
Consent Administration Office Rig
Washington 15, D.C.
Attn: Chief, Diricion of Prolimin
Mary Design (1) | | | Office, Chief of Engineers
Department of the Army
Washington 25, D.C.
Attn: ENGLM Engr. Div.,
Civil Works (1) | Office, Chief of Engineers
Department of the Army
Washington 25, D.C.
Attn: ENG-MD Planning Div.,
Civil Works (1) | Office, Chief of Engineere
Department of the Army
Whakington 25, D.C.
Attn: ENG-ES Frot. Court. Br.,
Engr. Div., Mil. Court. (1) | Director
Langlay hornantical Lab.
Langlay Field, Virginia
Atta: Structures Division (2) | Director
Forest Products Liberatory
Undizon, Vicemein (1) | Ciril Aeronatics Administration
Department of Commerce
Wathington 25, D.C.
Atter Chief, Airfress and
Squipment branch (1) | | Office, Chief of Engineere
Department of the Army
Washington 25, D.C.
Attn: SUG-M Structures Dr., Shgs
Div., Hil Comet. (1) | Office, Chief of Engineere
Department of the Army
Mashington B5, D.C.
Atta: EGC-HB Spec. Engr. Br.,
Engr. R and D Div. (1) | Commanding Officer
Engineer Research Development
Laboratory
Fort Belveir, Virginia (1) | Hational Sciences Poundation
1590 N Street, NoVe
Wholington, D.O.
Attn: Engineering Sciences
Division (1) | Hotienal Academy of Science
21Cl Constitution Arease
Whokington 25, D.Q.
Attm: Technical Sirector, Com.,
on Shipe! Structural Design (1) | Professor Lynn S, Socile
Prits Seglesering Ltb.,
Lobigh University
Bethlebma, Pennsylvenia (1) | | Office, Chief of Orienter
Department of the Army
Numberton 25, D.C.
Atte: Research and Materials
Branch (Ord R and D Div.) (1) | Office, Chief Signal Officer
Department of the Army
Much ington 25, 0.0,
Attn: Engineering and Technical
Division (1) | Generaling Officer
Naturies, Areseal
Materians, Massachusette
Atts: Esberatory Division (1) | Profesor R.L. Bisplinghoff
Department of Assumutical Eng.
Hacessbarette Destirate of
Technology
Combridge 39, Hacessbarette (1) | Professor H.H. Mainh
Department of Sivil Ingineering
Columbia University
New York 27, H.Y. (1) | Professor S.A. Balay
Department of Ciril Ingineering
Columbia University
New York 27, B.T. (L) | | Commanding Officer
Projectory Associal
Extraordina 31, Tennaylvania
Atlan: Laboratory Division (1) | Office of Ordnames Research
2187 Myrtle Drive
Dalm Station
Durban, Horth Carolina
Attn: Div. of Neg.Sciences (1) | Commending Officer
Squier Signal Laboratory
Fort Numbers, New Jeroky
Atten Compensate and Interials
Breach (1) | Professor G.F. Carrier
Pierse Mail
Servine Coloros May
Combridge 58, Reseablestte (1)
Professor A.C. Bringen | Professor Herbert Derestavies
Herbinestern University
Systems, Elitoria (1) | Professor D.C. Druster
Striction of Engineering
Seam Subversity
Providence L. Marie Saland (1) | | Director
Natorwaye Reportment Station
F.G. See 523.
Visinsburg, Missiszippi
4ths: Library (1) | Ohinf, Barons of Shipe
Department of the Hevy
Machington 25, D.G.
Attm: Code 300 (1) | Chief, Bureau of Misse
Department of the Hery
Washington 25, D.C.
Atta: Gade 327 (2) | Department of Acronistical
Engineering
Pardon University
Laterpotte, Indiana (1) | Professor V. Flage
Department of Heckenical
Regissoring
Stanford University
Stanford, Childrenia (1)
Professor N. Reterri | Professor J.N. Gentler
Department of Hobanical
Bugineering
Stanford University
Stanford, California (1)
Professor P.S. Notes | | Chief, herem of Shipe
Department of the Hery
Heahington 25, D.C.
Attn: Code 371 (1) | Chief, Baress of Shipe
Department of the Havy
Vanhington 25, D.C.
Attm: Code LE3 (1) | Ohinf, Barons of Shipe
Department of the Many
Washington 25, D.C.
Attn: Gode bio (1) | Ingineering Reportment Station
University of Riemosota
Himmospalls, Himmocria (1) | Pysiosov H. Hotenyi
the Technological Sertitute
Horthwestern University
Druneton, Elisade (1) | Professor F.G. Heige
Elimeis Invitate of Pennalagy
Senhalagy Spater
Chicago II, Elimeis (1) | | Ghisf, Bureau of Shipe
Department of the Heny
Weshington 25, D.C.
Attn: Code bid (1) | Chief, Bureau of Aeronautics
Department of the Heavy
Unchington 25, D.C.,
Attn: AMI-2 (1) | Ohiof, Darons of Acremetics
Repartment of the Hory
Washington 85, D.C.
Attn: DE (1) | Professor H.J. Hoff, Head
Dirision of Assessoration Bag.
Stanford University
Stanford, California (1) | | | | Ohief, Durons of Assemution
Department of the Hery
Vachington 25, D.C.
Attn: DH-63 (1) | Chief, Bureau of Assensation
Department of the Hary
Maskington 85, D.C.
Attn: TD-MS (1) | Chief, Buyons of Ordnance
Department of the Heny
Weshington HF, D,C,
Attn: Ad3 (1) | Profesour I.N. Los
Dirizion of Applied Nothernties
Stanfard University
Stanfard, California (1) | Professor George H, Lee
Director of Research
Reneralaer Polytechnic Resident
Tray, New York | | | Chief, Bareau of Ordnesse
Department of the Hony
Washington 25, D.O.
Attn: No. (1) | Object, Baroon of Ordnance
Department of the Novy
Washington 85, D.C.
Attn: Ref (1) | Chief, Bareau of Ordenses
Department of the Novy
Heshington SS, D.C.
Attn: Rem (1) | Profesor R.D. Mindlin
Department of Ciril Engineering
Calumbia University
438 W. 125th Street
Heer York ST, H.T. (1) | Dry A. Hedel
110 Chevry Valley Road
Physiciangh M., Francytvenia
(1) | Professor Peak H, Haghti
Separament of Regissoring
Holdenies
University of Galifornia
Servatory, Galifornia (1) | | Object, Directs of Ordennee
Department of the Hony
Heshington 25, D.O.
Attai: 52 (1) | Hechington 25, D.C. | Ohief, Barets of Yards and Doobs
Department of the Hong
Weshington 95, D.G.
Attn: Opin D-613 (1) | Professor William A. Hesh
Department of Engineering Mesh,
University of Florida
Oninerville, Florida (1) | Professor H.H. Hemsels
Separtment of Giril Regimeering
Subversity of Elimeis
Tream, Elimeis (1) | Profesor Aria Pullips
Reportment of Stril Engineering
In Propent System
Sale Holoropty
Nor Horm, Consertion (1) | | Chief, Durent of Papes and Costs
Department of the Hory
Vestington SF, D.C.
Attn: Code D-820 (1) | Chief, Buress of Yards and Scein
Department of the Hory
Washington 25, 3,0,
Attn: Onio 3-682 (1) | Code 0-410 (1) | Professor V. Prager
Brom Salversity
Provisions 18, Space Inland (1) | Profescer B. Releaser
Department of Distinguishe
Hospitalestic Institute of
Technology Sp. Macaninestic (1) | Professor M.i. Sedently
Separations of Mechanist
School are Polytochnia Martingto
long, See York | | Chief, Durons of Tards and Desim
Department of the Hosy
Weshington 85, B.C.
Attn: Code D-510 C (1) | Chief, Bureau of Fards and Desim
Department of the Herry
Machington 25, D.C.
Attn: Gade D-440 (L) | Chief, Durons of Wards and Recise
Department of the Rong
Heshington 25, D.C.
Attn: Onto D-500 (2) | Frof. Bernard W. Shaffer
Supi. of Shah. Bagineering
New York Understally
Understally Solghing
New York 25, New York (1) | Professor Et. Stormborg
Striction of Amiliat Schemetter
From Parison
Porrisons 12, Books Miland (1) | Professor §. P. Timeshmin
inheal of Inglasering
francour Walderston
francour, California (1) | | Committing Officer and Director
Devid Taylor Reidl Resin
Nashington 7, D.C.
Attn: Code 647 (1) | Commending Officer and Director
Derid Terior Healt hasin
Washington 7, 0.0,
Attn: Cade 700 (1) | Commissing Officer and Streeter
Borid Tepler Noiel Beats
Weshington 7, 5.0.
Attn: Gode 760 (1) | Professor A.S. Valuetes
important of thril Implemental
Subserving of Elimets
Trease, Elimets (1) | | br. John F. Brahts
Scartism of Salisantia
Liversity of Salisantia
(1) | | Commander
U.S. Meral Ordenne Laboratory
White Cale, Maryland
Attn: Technical Library (2) | | Sirector
Heterials inheretory
Now York Nevel Spierard
Breaking 1, Now York (1) | ib. Hartin Colond, Vice President
Eathbook Research Burtispie
8500 Oxiotre Resea
Sea Antonio, Tunna (1) | | Professor H. J. Hell
Sept. of first haginering
Salversity of Elisade
Oriena, Elimois (1) | | Officer-in-tharps
Novil Strik Ingineering Receives
and Brak, Lab., 17.5. Noval Constr.,
Novillan Conter
Lot Receive, Salifornia (2) | Director Boral Air Descrimental State Man Nov. Air 16th, Conter, Marie Man 15th 16th 16th 16th 16th 16th 16th 16th 16 | Officer-in-Charge
PASSET M. Printing Joseph Bin
Patter St., Vispide
Attent St., Asi, Soil (1) | Prof. R.P. Harrington, Nest
Dept. of Acronytical Engineering
Philipsick, of the Seneth (1) | | Control of the state sta | | | (-/ | | Semander MADS Hotales Petterson AFS, Onio Attn: MMMDS (1) | Community Management AFS, Gade (L) | jepielotine Reference Service
Library of Space,
Sachington 21, 5,6,
Sachington 21, 5,6,
Attack See, S., Smith (L) | | | | | in the second | | | Eistiani Air Force Base Alimparque; Nor Hamine Attn: Gate 50 (1)